    Next: Flow chart Up: The 2-D Burgers Equation Previous: Evolution of v velocity   Contents

# The Thomas Algorithm

We explain here in the general case how are treated the inversion of the systems resulting from implicit schemes with three space points (i-1, i, i+1). We can write them form : With boundary conditions : and What results in the following matric system : The boundary conditions can be gathered in the second member : The matrix obtained possesses three diagonals, then the inversion of the system is done by the Thomas Algorithm. It is done in two distinct times : The first consists to forward sweep the matrix in order to obtain a matrix with two diagonals in "removing" the coefficients : And we have a new algebraic system defined by : =   =  With the new coefficients :     The second time consists to backward sweep the new matrix in order to calculate the solution :

We obtain initially then, we calculate the solutions for any x, with the time step n+1 : * * * * *    Next: Flow chart Up: The 2-D Burgers Equation Previous: Evolution of v velocity   Contents
Alban Depoutre
2000-11-21