EXAMPLE , Part I


 Example I:

PIPE
0.d0              0.2d0         10d-5
1000.0d0      0.25d0       10d-5
3000.0d0      0.1d0         10d-6
EQUIPMENT
so1            1       0.d0
si1             2       5000.0d0
rv1             5       15.0d0       0.05d0
valv2         3       4900.0d0    0.9d0       1
wpump      6       1000.0d0
PUMP
50.d0    0.d0    100.d0
50.d5
1    1
1
0.05d0   0.14d0 0.10d0  0.5


In this case, the number of stages in pump is one. It is a very important consideration as we will see in the part EXAMPLE II.
 

Example II

This computation attempt to simulate the conveying of a simple fluid (2 components) from a well to a process plant.
The different needed file are edited in  a common directory (standard directory) :

TACITE.JOB    wellwell.GEO well.MSH well.PVT well.SCE well.STO well.THE well.TOP
 

view files

Screen output :
> tacite.out well
 

 *************************************************
 *****                                       *****
 *****              T A C I T E              *****
 *****              -----------              *****
 *****                                       *****
 *****        Transient Analysis Code        *****
 *****                                       *****
 *****           IFP - TOTAL - ELF           *****
 *****                                       *****
 *************************************************

   Steady state ...

   Maximum stabilization period =   120.000 s
   t=     0.000 s
                              dt=    0.1992         Conv. Criteria= 0.2445163

   Transient scenario ...
   t=     1.201 s
                              dt=    0.2024         Conv. Criteria= 0.5532427
   t=     2.000 s
                              dt=    0.1851         Conv. Criteria= 0.4243433
   t=     3.027 s
                              dt=    0.2030         Conv. Criteria= 0.4204780
   t=     4.036 s
                              dt=    0.2016         Conv. Criteria= 0.4103182
   t=     5.038 s
                              dt=    0.1992         Conv. Criteria= 0.3976811
   t=     6.000 s
                              dt=    0.1723         Conv. Criteria= 0.3924917
   t=     7.154 s
                              dt=    0.1877         Conv. Criteria= 0.3932549
   t=     8.059 s
                              dt=    0.1770         Conv. Criteria= 0.4063144
   t=     9.000 s
                              dt=    0.1417         Conv. Criteria= 0.4298692
   t=    10.000 s
                              dt=    0.0458         Conv. Criteria= 0.4409043

   End procedure ...

 ****************************************************

 Program stopped
 (5555)  TACITE: Scenario completed

 ****************************************************
 Note: this program was linked with -fast or -fnonstd
 and so may have produced nonstandard floating-point results.
 Sun's implementation of IEEE arithmetic is discussed in
 the Numerical Computation Guide.
[1]  + Done                          /appli/unshare1/MFN/ultra/bin/xmgr
>


We present a basic exploitation of the results extract from the well_01.TXN file.
We have used the Fortran routine to extract pressure evolution at the 45 m location and pressure distribution at T=4s.
 
 


 
 


 

Example II-Restart the previous computation


To restart the last simulation we have to modify the well.SCE file as :
 

RESTART=well_01
STOP_TIME = 20

EQUIPMENT = so1
---------------
UPST_COMP1
T=0                     BC=0.2
T=T+2                   BC=0.3
T=T+8                   BC=0.2
UPST_COMP2
T=0                     BC=20.
T=T+2                   BC=25.
T=T+8                   BC=20.
EQUIPMENT = si1
---------------
DOWN_PRES
T=0                     BC=10d5

EQUIPMENT = rv1
-----------------
SOUP_PRES
T=0                     BC=10d5
T=T+2                   BC=5d5
EQUIPMENT = valv2
-----------------
VALV_OPEN
T=0                     BC=50d0
T=T+2                   BC=100d0
T=T+4                   BC=50d0
 

 
TOP

A new computation files :
 
 
- TACITE.JOB 

well
12/11/99 11h30am
TITLE=welltoplant
TOP=well.TOP
GEO=well.GEO
THE=well.THE
MSH=well.MSH
PVT=well.PVT
SCE=well.SCE
STO=well.STO

 

- well

TITLE=welltoplant
NOTE=Thermal simulation: temperature profile given
NOTE=conveying from oil well to process plant
TOP=well.TOP
GEO=well.GEO
THE=well.THE
MSH=well.MSH
PVT=well.PVT
SCE=well.SCE
STO=well.STO

 

- well.GEO

PIPE
0.d0         0.2d0     10d-5

EQUIPMENT
so1      1       0.d0
si1      2       5000.0d0
rv1      5       15.0d0    0.05d0
valv2    3       4900.0d0    0.9d0    1

 

- well.MSH

GRID
X=0.d0     NB=10
X=50.d0   NB=50
X=5000.d0 

 

- well.PVT 

5                            ! Type: 1=correlations
1d5        300d0      ! normal pressure and temperature
1.00d0                   ! TPN gas density
1.5d-5                  ! TPN gas viscosity
1000d0                  ! TPN liquid density
1.5d-6                  ! TPN liquid viscosity
70d-3                   ! TPN interfacial stress
1400d0                  ! Specific Heat of Gas
1500d0                  ! Specific Heat of Liquid
3d-2                     ! Gas conductivity
0.14d0                   ! Liquid conductivity
0d0                        ! ki1
0d0                        ! ki2

 

- well.SCE

STABILIZE = 120
STOP_TIME = 10

EQUIPMENT = so1
---------------
UPST_COMP1
T=0                     BC=0.2
T=T+2                   BC=0.3
UPST_COMP2
T=0                     BC=20.
T=T+2                   BC=25
EQUIPMENT = si1
---------------
DOWN_PRES
T=0                     BC=10d5

EQUIPMENT = rv1
-----------------
SOUP_PRES
T=0                     BC=10d5
T=T+2                   BC=5d5
EQUIPMENT = valv2
-----------------
VALV_OPEN
T=0                     BC=50d0
T=T+2                   BC=100d0
T=T+4                   BC=50d0

 

- well.STO

PERIOD=1
STYLE=ASCII

- well.TOP

0.d0        0.d0
20.d0       20.d0
1000.d0     20.d0
5000.d0     25.d0

- well.THE 

1
0.        310.
5000.    300.

 


            TOP



 

                    We present a basic exploitation of the results extract from the well_01.TXN file.
                    We have used the Fortran routine to extract pressure evolution at the 45 m location and pressure distribution at T=12s.

                TOP
 

               TOP