Numerical Exploration of Waves and Hydrodynamics Instabilites (ENOI)

Back to index
Description of the course (.pdf)

Year 2003/2004

Year 2002/2003

The teacher contribution (Pr. O. THUAL) : Data assimilation for numerical forecasting
 

Intranet (not to be put on the Internet) : written evaluation
Back to index


Year 2000/2001
  • Stéphanie TERRADE : Overview of Hydrodynamic Instabilities , (hyb72)
  • Julien DELBOVE : Experimental study of the bifurcations of the Kuramoto-Sivashinsky equation, (hyb14)
  • Alban DEPOUTRE : The 2D Burgers Equation, (hyb74)
  • Stéphanie ROY :  1D Burgers' Equation, (hyb56)
  • Ludovic MAAS : 1D study of Burgers' equations (hyb41)
  • Laurent NACK, : Burgers' equation 1D study(hyb46)
  • Francois CAMILLERI : 1D Burgers' equation, (hyb08)

  •  

     
     
     
     
     
     
     
     
     

    Year 1999/2000

  • Frederic BREANT : Henon attractor
  • Sylvie CHAMPEAUX : The Sierpinski triangle
  • Guilhem CHANTEPERDRIX : Attraction basin with Newton' method
  • Adil EL YAMANI : The double well oscillator
  • Perrine GUILLO : A model for the dynamics of populations applied to sharks and sardines
  • Delphine HERTENS : The Henon attractor ; some of its funny properties
  • Arnaud HORMIERE : Study of the pendulum
  • Nicolas KAWSKI : Taylor-Couette instabilities
  • Jean LAPORTE : Henon attractor
  • Ghislain LARTIGUE : The iterative function system
  • Erwan LE MENACH: The King's Dream : a simple and beautiful fractal
  • Axel MERLE : The pendulum (damped and driven)
  • Sophie RICCI : The "Boulanger" transformation
  • Jerôme SARRAILLE : An application in biology : Lokta Volterra two species model
  • Alain SCHULER : Chaos and fractal : the Koch's curve
  • Laurent SELLE : A quick look at Henon attractor
  • Aymeric TRONEL : Study of a mechanical instability : the resonance
  • Sébastien VOISIN : The parametric oscillator
  • Stephane ADER : Lorenz system (french)
  • Anne GOBIN : Julia's set - Mandelbrot's set
  • Charles MARTIN : Predator-prey population dynamics
  • Thierry PERROT : The Henon's attractor
  • Paul THOMAS : The Lorenz systme and its application to the detection of nonlinear coupling
  • Faycal BEN YAHIA : Liapounov nonlinear stability

  •  

     
     







    Back to index

    Year 1998/1999

  • Sébastien Massart:  The growth
  • Francois Dabireau :  The pendulum
  • Mohamed Makan, Frédéric Deghetto : Chaotic insect population
  • Eric Valette : Hydrodynamic instabilities
  • Arnaud Delaunay : Quadratic application
  • Samia Tabli, Olivier Antibi : Hydrodynamic instabilities
  • Jérémie Sagarra, Alexandre Perchat : Chaotic attractors in forced oscillators
  • Samir Karaa : Instabilities with COLSYS
  • Hicham Wahbi: Examples of instabilites in Fluids
  • David Guenadou : Course item
  • Delphine Cayrol : The clown hat function
  • Said Ghalimi : The Soda Bottle oscillator

  •  

     
     







    Back to index

    Year 1997/1998

  •  Bertrand Naud : Noeud-col, Fourche, Hopf
  •  Deborah Idier: La Boussole
  •  Thierry Soulères : Le système de Lorenz
  •  Arnaud Brengues : L'attracteur de Lorenz
  •  Alexandre Castellini : L'attracteur de Hénon
  •  Huu-Thi DO : Le modèle de Rossler
  • Benoit Gonzalvo : Les Bifurcations

  •  

     
     








    Back to index


    Practical details and evaluations


    Back to index
     

    All previous Years on INTERNET :  http://www.enseeiht.fr/travaux/THEMES/travaux/optmfn/hi/hi.htm
     
     

    Back to index

    Teacher : Olivier Thual