Modélisation des transferts thermiques en parois dans un réacteur de fluoration de l'uranium


   

Simulation sur Neptune_CFD

 Les paramètres

 Le maillage

Le maillage a été réalisé avec le logiciel Simail. Le maillage utilisé est un maillage 2D qui a été élevé en 3D d'une maille pour des raisons de conditions aux limites. Le maillage a une dimension de 90x400mm². La largeur de la surface a été divisée en 9 nœuds ce qui correspond à un espacement de 10-3m. La hauteur a été divisée en 40 nœuds. Le maillage comporte donc 360 mailles. 

       

 Le fichier edam

Il y a deux phases dans le lit fluidisé, une phase fluide et une phase solide. Le fluide est de l’air et la phase solide est composée de particules d’alumine. Les propriétés de ces deux phases sont les mêmes que pour la simulation Matlab. Le modèle qui représente la phase fluide est k-ε et le modèle représentant la phase solide est q2-q12.

La mémoire allouée pour les entiers et de 106 et la mémoire allouée pour les réels est de 108. Le pas de temps est dépends du temps.

Deux scalaires ont été ajouté afin de connaître l’évolution de l’enthalpie en fonction du temps pour les deux phases.

La gravité est prise en compte suivant l’axe y.

Le fluide entre avec une vitesse 0.48m/s suivant l’axe y. Les conditions aux limites pour les scalaires sont des conditions de type flux nul en entrée et en sortie et des conditions de températures imposées au niveau des parois. La température imposée est de 1073K ; ce qui correspond à la température de l’expérience de Yamada [1].

 Les subroutines utilisées

Pour finir de représenter le lit fluidisé, trois subroutines sont utilisées qui sont codées en Fortran 77. La première subroutine, nommée usiniv.F, permet d’initialiser la fraction volumique des particules présentes dans le lit. Les particules n’entrent pas comme le fluide dans le lit mais sont déjà présentes à l’intérieur du lit. La fraction volumique des particules solides a été initialisée à 0.1.

La deuxième subroutine, nommée usclim.F, permet de remplir un tableau de conditions aux limites pour certaines variables. Dans cette routine, il a été programmé les conditions de flux sur les parois.

La condition à la limite aux parois est représentée par un flux qui a pour équation pour chacune des phases :

 

Les coefficients hp et hg ont été obtenus par le modèle 1D qui a été résolu. Dans la routine, ces deux coefficients de transfert thermique ont été implémentés, dans le cas où la température est imposée à la paroi.

La routine a été programmée de la façon suivante :

C-OS- Modifications pour les calculs anisothermes AREVA_NC

C-OS- Condition de température imposée en paroi sur z < ou = 0,5 m

C-OS- Coefficient d'échange de la couche limite particulaire

C-OS- HECH (W/m²/K)

C-OS- HFLUI = HECH / ALPHA / CP

ELSE IF( IPHAS.GE.1 .AND.

      &   ICONDL(IFAC,IPHCL(IPHAS)).EQ.IPAROI ) THEN

C

VALSCA = PROPHY(IEL,ICP(IPHAS)) *( VALSCA -T0(IPHAS))

IF(XYZCEN(3,IEL).LE.0.5D0) THEN

C-- calcul de HECH pour la phase considérée avec le modele de couche limite

B=0.1*3970*PROPHY(IEL,ICP(2))/

      &      (0.0204*4.286e-9*0.1*3970*PROPHY(IEL,ICP(2)))

C

C=RTPA(IEL,IALPR(2))*3970*PROPHY(IEL,ICP(2))/

      &   (0.0204*4.929e-5*RTPA(IEL,IALPR(1))

      &      *PROPHY(IEL,ICP(1))*0.7372)

C

                G = 3970*PROPHY(IEL,ICP(2))*4.286e-9*(B/C)*sqrt(B+C)

      &      + 4*0.8*5.67e-8*TENT**3*(B/C);

C

H =-(B/C)*sqrt(B+C)*3970*PROPHY(IEL,ICP(2))*4.286e-9

       &     + 4*0.8*5.67e-8*TENT**3*(B/C);

C

K4=(-3*0.8*5.67e-8*TENT**4 - 0.9*5.67e-8*TENT**4 -

       &     (3970*PROPHY(IEL,ICP(2))*4.286e-9/5e-4)*

       &     (473.15-TENT) + 4*0.8*5.67e-8*TENT**3*TENT)/

       &  (-(4.286e-9*3970*PROPHY(IEL,ICP(2))/5e-4)*

       &     (exp(2*sqrt(B+C)*5e-4)-1)

       &     -4*0.8*5.67e-8*TENT**3*(exp(2*sqrt(B+C)*5e-4)-1)

       &     -G*exp(2*sqrt(B+C)*5e-4)+H)

C

K2=TENT-(1-exp(2*(B+C)**0.5*5e-4))*K4

C

K3=-exp(2*(B+C)**0.5*5e-4)*K4

C

K1=(1/5e-4)*(473.15-TENT-(1-exp(2*(B+C)**0.5

       &     *5e-4))*K4)

C

Tp=K1+B/C*sqrt(B+C)*K3*exp(-sqrt(B+C)*5e-4)

       &     -B/C*sqrt(B+C)*K4*exp(sqrt(B+C)*5e-4)

C

Tf=K1-sqrt(B+C)*K3*exp(-sqrt(B+C)*5e-4)

       &     +sqrt(B+C)*K4*exp(sqrt(B+C)*5e-4)

C

IF(IPHAS.EQ.1) THEN

                                HECH= - RTPA(IEL,IALPR(IPHAS)) * 0.0371*Tf

       &                     / (TENT - 473.15)

C

ELSE

                HECH=-(32/9)*RTPA(IEL,IALPR(IPHAS))*5.67e-8*60e-6*TENT**

       &                     3*Tp / (TENT - 473.15)

C

ENDIF

 

La troisième subroutine, appelée condli.F, permet de traduire les conditions aux limites fournies par usclim.F sous une forme admissible par le solveur.

Les résultats

Les profils d'enthalpie que nous obtenons sont les suivants:

Les résultats obtenus ont la même allure que les résultats obtenus avec le modèle 1D sur Matlab. La largeur des mailles n'étant pas les mêmes que dans le programme Matlab, il est difficile de comparer les résultats avec ceux de Matlab. Dans le but de comparer les résultats de Neptune_CFD avec ceux de Matlab, un nouveau maillage a été réalisé. Ce maillage  a une dimension de 100x1000mm². Cette dimension correspond au lit fluidisé utilisé pour l’expérience de Yamada [1]. La largeur de la surface a été divisée en 200 nœuds ce qui correspond à un espacement de 5*10-4m, ce qui correspond bien à la largeur de la maille utilisé dans Matlab. La hauteur a été divisée en 100 nœuds. Le maillage comporte donc 20 000 mailles. Les calculs ont eu du mal à aboutir en raison d'un problème de mémoire. Malgrè tout des résultats ont été obtenus,  les profils d'enthalpie que nous obtenons sont les suivants:



Les résultats obtenus ne sont pas les mêmes que sur Matlab. Le profil d'enthalpie totale sur Matlab est le suivant: