1999/2000

HYDRODYNAMIC INSTABILITIES

Back to index

Work of previous years :  Back to listing by subject (all years)


Year 1999/2000

  • Frederic BREANT : Henon attractor
  • Sylvie CHAMPEAUX : The Sierpinski triangle
  • Guilhem CHANTEPERDRIX : Attraction basin with Newton' method
  • Adil EL YAMANI : The double well oscillator
  • Perrine GUILLO : A model for the dynamics of populations applied to sharks and sardines
  • Delphine HERTENS : The Henon attractor ; some of its funny properties
  • Arnaud HORMIERE : Study of the pendulum
  • Nicolas KAWSKI : Taylor-Couette instabilities
  • Jean LAPORTE : Henon attractor
  • Ghislain LARTIGUE : The iterative function system
  • Erwan LE MENACH: The King's Dream : a simple and beautiful fractal
  • Axel MERLE : The pendulum (damped and driven)
  • Sophie RICCI : The "Boulanger" transformation
  • Jerôme SARRAILLE : An application in biology : Lokta Volterra two species model
  • Alain SCHULER : Chaos and fractal : the Koch's curve
  • Laurent SELLE : A quick look at Henon attractor
  • Aymeric TRONEL : Study of a mechanical instability : the resonance
  • Sébastien VOISIN : The parametric oscillator
  • Stephane ADER : Lorenz system (french)
  • Anne GOBIN : Julia's set - Mandelbrot's set
  • Charles MARTIN : Predator-prey population dynamics
  • Thierry PERROT : The Henon's attractor
  • Paul THOMAS : The Lorenz systme and its application to the detection of nonlinear coupling
  • Faycal BEN YAHIA : Liapounov nonlinear stability
  • Back to index

    Teacher : Olivier Thual, thual@imft.fr