1999/2000
HYDRODYNAMIC INSTABILITIES
Work of previous years : Back
to listing by subject (all years)
Year 1999/2000
Frederic BREANT : Henon
attractor
Sylvie CHAMPEAUX : The
Sierpinski triangle
Guilhem CHANTEPERDRIX : Attraction
basin with Newton' method
Adil EL YAMANI : The
double well oscillator
Perrine GUILLO : A
model for the dynamics of populations applied to sharks and sardines
Delphine HERTENS : The
Henon attractor ; some of its funny properties
Arnaud HORMIERE : Study
of the pendulum
Nicolas KAWSKI : Taylor-Couette
instabilities
Jean LAPORTE : Henon
attractor
Ghislain LARTIGUE : The
iterative function system
Erwan LE MENACH: The
King's Dream : a simple and beautiful fractal
Axel MERLE : The pendulum
(damped and driven)
Sophie RICCI : The "Boulanger"
transformation
Jerôme SARRAILLE : An
application in biology : Lokta Volterra two species model
Alain SCHULER : Chaos
and fractal : the Koch's curve
Laurent SELLE : A quick
look at Henon attractor
Aymeric TRONEL : Study
of a mechanical instability : the resonance
Sébastien VOISIN : The
parametric oscillator
Stephane ADER : Lorenz
system (french)
Anne GOBIN : Julia's
set - Mandelbrot's set
Charles MARTIN : Predator-prey
population dynamics
Thierry PERROT : The
Henon's attractor
Paul THOMAS : The Lorenz
systme and its application to the detection of nonlinear coupling
Faycal BEN YAHIA : Liapounov
nonlinear stability
Back to index
Teacher : Olivier Thual, thual@imft.fr