Bottom connected case

In this case, a simulation using level set method with a refine mesh with jadim is realized, for which the geometry is exactly the same with experiments,  the mesh is is refined, and the bottom of the equipment is connected.   


$$\rho_{water} /\rho_{oil}$$ (kg/m3)
$$\nu_{water} /\nu_{oil}$$ (Pa.s)
$$ \sigma_{oil/water} $$ (N/m)
mesh size (cells)
mesh size (m)
1000; 800


Experiment                                                             Simulation with jadim-level set method

In the bottom open case, after the valve opens, the interface moves mainly  due to gravity as well as U tube effect, and finally reaches equilibrium, with the same flow pattern, oil on the top and water on the bottom.  It is observed that the equilibrium time to arrive the final steady state are similar with the experiment and  simulation, despite a difference in viscosity. Also, compared with the fluids movement during the experiment, in which the interfaces of water and oil rises or drops more steady.  With simulation with the method level set in jadim, more dispersed phase appears.