Terminal velocity as a function of Droplet Radius

The most important parameter in our study is is radius of the droplet as it is squared in the the Stokes correlation : Meaning with a small increase in radius the terminal velocity will have an huge increment in its value.

$v_d=\frac{(\rho_d-\rho_f)gd^2}{18\mu_f}1000=f(\Delta\rho,\mu,d)$

Terminal velocity is an important concept in gravity.it's defined as the velocity as which the vertical component of the drag force exactly countracts the net gravity force.

Terminal velocity increase when the radius increase because of the bouyancy:the volume of the droplet increase.