Multiphase-flow simulations

The numerical simulation of flows with interfaces is a vast and complex topic, with applications in domains as varied as environment, geophysics, engineering, and fundamental physics.

Indeed, phenomena considered often happen on scales of space and time where experimental visualizations are difficult or impossible. In such cases, numerical simulation may be a useful tool to validate the intuition of the physicist, the engineer, or the mathematician.

In our case, gas injections in the fracture/cave configuration has not been developped yet. Therefore, the simulations carried out in the BEI will help our industrial partner  to anticipate and to optimize futur gas injections in the reservoir.

Different numerical techniques exit to simulate three-phase flows. If most of them only allow low Reynolds or Weber numbers, the continuous improvement of computational power extends the range of affordable problems.

In the first part of the project, an analyze of different simulation methods based on Navier-Stokes equations is conducted. Understanding problems and limitations of each methods will allow us to choose the most appropriate method to our case and to be aware of its limitations.

Moreover, a comparative study of Jadim and Fluent, two CFD software, is conducted to know how they handle three-phase flow simulations.