[1] H. Schlichting and K. Gersten. Boundary-layer theory. Springer, 2003.

[2] B.H.K. Lee. Self-sustained shock oscillations on airfoils at transonic speeds. Progress
in Aerospace Sciences, 37 :147–196, 2001.

[3] E. Stanewsky. Shock boundary-layer interaction. AGARD (A.R. 224-4.5), April 1988.

[4] J. Délery. Shock wave/turbulent boundary layer interaction and its control. Aerospace
Science, 22 :209–280, 1985.

[5] E. Stanewsky and D. Basler. Experimental investigation of buffet onset and penetration
on supercritical airfoil at transonic speeds. AGARD (C.P. 483-4), April 1990.

[6] G. Broweys. Étude de stratégies de contrôle du tremblement transsonique sur voilure supercritique. PhD thesis, Université de Poitier, Mars 2010

[7] J.D. Crouch, A. Garbaruk, D. Magidov, and A. Travin. Origin of transonic buffet on airfoils. Journal of Fluid Mechanics, 628 :357–369, 2009.

[8] A. Bouhadji and M. Braza. Organised modes and shock-vortex interaction in unsteady viscous transonic flows around an aerofoil. Computers and Fluids, 32 :1233–1281, 2003.

[9] CERFACS : Caractéristiques de NSMB Source

[10] C. Content. Méthode innovante pour le calcul de la transition laminaire-turbulent dans les codes Navier-Stokes. PhD thesis, ISAE Toulouse, Octobre 2011

[11] H.H. Pearcey, A.B. Haines, and J. Osborne. The interaction between local effect at the shock and rear separation - a source of a significant scale effects in windtunnel tests on airfoils and wings. AGARD, Rapport Technique CP35, 1968.