Partie 2:Convection in the mantle
The structure of the earth
is divided in three main parts:
.The first one is the external
envelop, about 10 km deep, called the crust
.Then comes the mantle,
where the structure is warmer and less viscous, about 2900 km deep
.Finally, the kern,
which diameter is about 7000 km.
This division is superposed with
an other one that distinguishes the lithosphere
about a few hundred kilometers, made of uge rigid slabs that move at the
surface of the earth.
This lithosphere, including the
crust and the upper mantle, rigid, lays on the asthenosphere
where the mantle becomes smoother on several hundred kilometers and
where the convection movements develop.
Slab
tectonic:
The movements of convection
in the mantle are directly linked to the slab
tectonic.
The slabs are in constant movement
and their speed is about a few centimeters per year.
Oceans are the results of their
divergence, and mountains of their collisions.
Oceanic ridges can create gaps of about 15 cm per year, from those gaps merges the basalts that regenerate the earth's crust.
When the slabs get closer , one goes beyond the other bringing cold material in the mantle, this is called subduction, the compression create mountains and volcanic areas on the the slab above and the subductuded slab is buried in the mantle.
This sinking in is compensed by the rising of warm material in the volcanic zones and the oceanic ridges.
Very soon
those movements were explained by convection movements in the mantle,
but the size and the geometry of those movements is still not very well
known.
Two main hypothesis exist:
The
two zones of the mantle:
These two zones were detected thanks to sismic waves propagation studies: the wave speed changes at around 670 km where the materials structure changes, the more stable materials are the perovskite silicates, Fe, Mg.
At first sight, it could sound surprising that a cristallin solid could be animated of convection movements.
In fact, the mantle behaves like a fluid of infinite viscosity: this material is almost solid but still capable to flow at the geologic temporal scale with a dynamic viscosity of about 10^21 poiseuilles.
The
theory of convection in the mantle:
Like a solid, a fluid can conduct heat by conduction, but it can also transport it thanks to the movement of its particles, this is called advection.
Here, this is the difference of
temperature between the top and the bottom of the domain that generates
the movement: when a body becomes warmer, it gets lighter and as
a result starts rising.
As it is rising it is surrounded
by colder bodies and get colder, heavier and so stops rising.
This movement is in competition
with the strengh of viscosity and the natural gradient of temperature set
by the thermal conduction.
Those three effects are summed up by the Rayleigh number, when it gets bigger than a critic value, the system becomes unstable and the particles start moving.
Henri Bénard (1900) and Lord
Rayleigh (1916) established the equations of convection but when it comes
to considering the all mantle, the problem gets more complex.
In fact, the radioactif elements
generate heat as they decompose and the compressibility of the rocks, or
phases changes transform the equations system in a non
linear coupled system hard and expensive to
solve.
The
consequences of the convection movements : magma
The crust is mainly composed of
granit, we have numerous samples of this zone. In the mantle, basalts are
the most present, they reach the surface as magma, producted by the fusion
of the periodites that are the main constituant of the mantle.
This
fusion takes place about 200 km deep beyond
the surface and results from the fast rising of the periodites where the
convection movements create acsendant movements to the surface.
The important pressure on
the rocks decrease faster than the temperature, what allows the fusion
and the creation of a magma.
When the rocks of the mantle melt,
the different chemical elements separate in a liquid and a solid fraction
depending on their affinity for the magmatic liquids.The mantle is
the rest of the continental extraction , privated from by the departure
of the magmaphiles elements.